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Abstract

This paper discusses a new continuum formulation for viscoelastic materials at finite strains. The model proposed is
based on the multiplicative decomposition of the isochoric component of deformation gradient into elastic and viscous
contribution and the generalized Maxwell rheological model. The inelastic or viscous components of the deformation
gradient provide the internal variables required for the irreversible thermo-mechanical model. Nonlinear rate type of
evolution equations are then proposed for the internal variables. These are based on a particular linear relaxation form
of the generalized Maxwell model which leads to a viscoelastic formulation that can be seen as a particular case of a
large strain viscoplastic model based on maximum plastic dissipation. In addition to the rate evolution equations,
simple incremental stress update equations are proposed. These closely resemble the radial return algorithms used in
von Mises plasticity. Finally a spatial form of the viscoelastic formulation is presented for isotropic materials. This
formulation is based on principal directions and logarithmic stretches. Again incremental equations will be considered
in order to permit subsequent computational implementations. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A number of viscoelastic formulations have been proposed in recent years in order to extend the well
known linear rheological models to the large strain regime. Lubliner (1985) proposed an extension of the
pioneering work of Green and Tobolsky (1946) based on the multiplicative decomposition of the defor-
mation gradient into elastic and permanent viscous components. The resulting model is only limited by the
choice of linear rate equations to describe the relaxation of the viscous strains. Unfortunately, in the finite
strain range, the plastic strains are nonlinearly constrained and therefore their evolution cannot be gov-
erned by a linear rate equations. Simo (1987), Holzapfel and Reiter (1995), Holzapfel and Simo (1996),
Holzapfel (1996) and Simo and Hughes (1998) have proposed alternative models in which the evolution of
the viscous nonequilibrium stresses is defined directly by a linear differential equation that mimics the force
relaxation process taking place in linear rheological models. These models have been extensively and
successfully used in practice. However, in the common case of materials with a purely elastic volumetric
response, the nonequilibrium stresses are deviatoric in nature and therefore in the material setting satisfy
nonlinear constraints. Devising linear evolution equations that are compatible with such constraints is still
an open question. All the above formulation have in common the separation of volumetric and isochoric
components of the deformation using a multiplicative procedure discussed by Ogden (1984), Simo et al.
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(1985) and Simo and Taylor (1991). This enables the volumetric response to be purely elastic as is the case
of many materials of practical interest.

The approach followed in this paper is based on the model proposed by Lubliner (1985). In common
with this work the formulation is based on multiple multiplicative decompositions of the deformation
gradient into viscous and elastic components. Each of these decompositions represents a spring in series
with a dashpot in a linear rheological model. The permanent strain in each dashpot represents a set of
internal variables required to define the thermo-dynamical state of the system. In contrast with the model of
Lubliner, however, nonlinear forms of the rate equation governing the evolution of the state variables will
be derived from linear relaxation laws based on a simple 1-dimensional rheological model. Significantly,
this evolution equations will not only be considered in a rate form but incremental counterparts will be
derived in recognition of the need for a future computational implementation. The resulting viscoelastic
formulation can be seen as a particular case of the general large strain elasto-viscoplastic formulation
proposed by Simo (1988) in which the elastic region has been collapsed to the origin.

The paper will in fact propose two different but related models. The first one is based in the reference
configuration and is therefore suitable for any materials including those exhibiting anisotropy. Unfortu-
nately, the incremental update of the plastic strain requires the solution of six nonlinear equations at each
increment. For isotropic materials a second formulation is proposed based on principal directions of strain
and logarithmic stretches. This formulation, although still based on the multiplicative decomposition and
nonlinear relaxation equations, is easier to implement as it avoids the need for solving nonlinear equations
to update the plastic strain. Both models will only coincide for a particular form of the strain energy
functional. Alternative spatial models have been proposed by Reese and Govindjee (1998).

The formulations presented will be illustrated with the help of simple and well known hyperelastic strain
energy equations, namely the compressible neo-Hookean and Hencky models (see for instance Peric et al.,
1992). In addition only isothermal processes will be considered.

1.1. Rheological model

The formulation presented is based on the generalized Maxwell model, also known as Wiechert model
(see for instance Findley et al., 1976), shown in Fig. 1. In this simple model, the total force includes a long
term or steady state component f,, plus an arbitrary number of nonequilibrium forces f, as

Ex]f : q‘f

L—>x

Fig. 1. Generalised Maxwell model.
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In order to generalize the above model to the large strain 3-dimensional case, it is necessary to re-write it
in terms of the total free energy of the system. As in the case of the force, this is achieved by simply adding
the steady state and nonequilibrium terms to give,

P(x) = PoolX) + > Walx,x,), 2)

where for the simple linear model described in Fig. 1, the strain energy terms are expressed in terms of the
corresponding strain in the springs and the spring constants as

Y, = %Kooxz7 (3a)
v, = %Ky(x - xa)z. (3b)

Note that in this equation, the displacements in the viscous elements are internal variables which must be
known in order to fully describe the state of the system. Differentiating Eq. (2) with respect to the total
strain variable x gives the total force in the system as

f:Kocx—i—ZKi(x—xa). (4)

The above model is not complete without equations describing the evolution of the internal variables x,.
For each of the viscous elements depicted in Fig. 1, this is defined by a relationship between the force in the
corresponding spring and the rate of change of the viscous deformation as

CoXy = fus (5a)

Ja :Kx(x_xat)a (Sb)

where ¢, represents the linear viscosity of the dashpot and can be related to the stiffness of the corre-
sponding spring in terms of a retardation time parameter 7, as

c, = T,K,. (6)

This definition enables Egs. (5a) and (5b) to be re-written in the form of an evolution equation for the
internal variable x, as

. 1 7

xa—fx(x Xy)- (7)

A nonlinear extension of Eq. (7) will be used to define the evolution of the internal variables in the spatial

model proposed in Section 3. However, the extension of Eq. (7) for the nonlinear Lagrangian formulation is
more difficult. This is due to the fact that the internal variables to be used will be nonlinearly constrained
and therefore unable to satisfy a simple linear evolution law as given by Eq. (7). An alternative form of Eq.
(7), more suitable for extension to the Lagrangian nonlinear regime is obtained by expressing Eq. (5a) in
terms of the relaxation of nonequilibrium forces f, at constant total strain x to give

df,
dr

1
= - foz~ (8)
X = constant To
It is a trivial exercise to show that in the linear model described above, Eq. (8) combined with Egs. (5b) and
(6) leads immediately to Eq. (7). Similarly, in the nonlinear context an obvious generalization of Eq. (8) will
lead to correct evolution equations for the nonlinear internal variables used.
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2. Material (Lagrangian) formulation

Many viscoelastic materials of practical interest, such as human body soft tissues, exhibit anisotropic
behaviour, Holzapfel et al. (1996), Bonet and Burton (1998). In such cases the constitutive model has to be
defined in the material or reference configuration in terms of second Piola—Kirchhoff stresses and right
Cauchy—Green or similar strain measures. The resulting equations can be subsequently pushed forward
to the current or spatial configuration to define Cauchy stresses. This section will describe a nonlinear
viscoelastic model in the reference configuration which is therefore suitable for anisotropic materials.

2.1. Multiplicative decomposition

Consider the motion x = ¢(X,¢) of a general body in three dimensions so that a particle at initial po-
sition X occupies position x at time ¢. Let also F = Vy¢ denote the deformation gradient of such motion at
a given instant in time. In common with current large strain elasto-plastic models, the kinematic foundation
of the model proposed is the multiplicative decomposition of the deformation gradient F into volumetric,
isochoric elastic and viscous components. In order to define this process, consider first the decomposition of
the deformation gradient F of a general 3-dimensional motion in terms of volumetric and volume pre-
serving (isochoric) components as (Simo et al., 1985),

F=JF; J=detF. (9)

By construction the tensor Fis isochoric, whereas the change in volume during the motion is given by the
Jacobian J. For most of metals and polymer based materials, the volumetric deformation is purely elastic
and the viscous effects are restricted to the isochoric component of the deformation. The above decom-
position easily permits volume and volume preserving parts to be treated separately.

In order to extend the general Maxwell model described in Fig. 1 to the large strain 3-dimensional re-
gime, consider the multiplicative decomposition of the isochoric deformation gradient into multiple elastic
and permanent or viscous components as (Lubliner, 1985)

F=F.F,. (10)

This equation is illustrated in Fig. 2. As in the generalized Maxwell model, the number of viscous com-
ponents o is arbitrary. Each viscous element has an associated tensor of internal variables F,, which defines
the current state of the system. Thermo-dynamical equilibrium is achieved when F,, = F. Note that the
assumed isochoric nature of the viscous deformation implies that det F,, = 1.

In order to ensure that the model is independent of rigid body rotations in the spatial configuration, the
total, isochoric, elastic, and permanent Cauchy—Green tensor strain tensors corresponding to the above
deformation gradient components are defined as

C=F"F, (11a)
C=F"F=1'"°C; L=detC=J,, (11b)
C., =F!F., (11c)
C,=FF,. (11d)

The above tensors, rather than the deformation gradients will be used as main variables in the Lagrangian
formulation in order to ensure objectivity. Observe, however, that unlike C, C and C,,, the tensor C e, 1S
not based at the reference configuration but at the unloaded state. For this reason, J, C and C,, are the set
of variables used to define the thermo-dynamical state. Note also that the condition det F,, = 1 implies
detC,, =
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Fig. 2. Multiplicative decomposition.

2.2. Strain energy

The starting point of the nonlinear model is an expression for the elastic energy of the system. In
common with Lubliner (1985), Holzapfel and Reiter (1995) and Holzapfel and Simo (1996) and by analogy
with the Maxwell equation (2), this is assumed to be given as the sum of volumetric, long term and viscous
components as

P(C,C,,) = UWJ)+ P (C)+ D P,(C.C,,). (12)

Note that the nonequilibrium viscous terms are functions of both C and C,, so that ¥, can vanish as C,,
approaches C. A typical example of the strain energy function is the simple compressible neo-Hookean
material defined by volumetric and isochoric components given by (see for instance Bonet and Wood,
1997),

U(J) =3K(J = 1), (13)
Y =lu(tr € —3) =lu(l;'PC 1 -3). (14)
In addition, again simply as an illustration of Eq. (12), the strain energy function associated to each of the

viscous components can be assumed to be proportional to the long term expression and therefore given as
(Govindjee and Simo, 1992),

'Px(avcw) :ﬁaqjoo(aex)v (15)

where f3, are positive nondimensional proportionality factors. For the case of the neo-Hookean model, the
above assumption combined with the fact that the invariants of C., coincide with the invariants of CC_ !
leads to

¥,(C,C,,) = B,u(C: C;' - 3). (16)
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Note, however, that Eq. (15) is only strictly correct for materials where the permanent strain energy
function ¥, is isotropic, that is a function of C via its invariants. This is of course the case for the
illustrative neo-Hookean material chosen above, but it will not apply to more general anisotropic con-
stitutive models.

2.3. Second Piola—Kirchhoff stress tensor

The second Piola—Kirchhoff stress tensor § can now be obtained by differentiating the strain energy
function with respect to the right Cauchy—Green tensor C. Given the de-coupled nature of the strain energy
equation (12), this derivative leads to volumetric and ‘true’ deviatoric components of .S as

oY

§=257=Su+S, (17a)
ou

Svol—%> (17b)

S :C=0. (17¢)

The volumetric component of S can be expressed in terms of the isotropic pressure p by noting that
J? = I; = det C and making use of the following relationship (see for instance Bonet and Wood, 1997):

—=5LC"' 18
ol (18)
to give after simple algebra
dUu
Sl =pJC', p=—. 19
1= P p a7 (19)

The ‘true’ deviatoric component of S satisfies condition (17¢) rather than having a trace equal to zero. In
effect, the product S : C can be interpreted as the trace with respect to the metric tensor C. In order to
evaluate §', the isochoric component of the strain energy equation (12) needs to be differentiated with
respect to C to give

S'=S.+> S, (20)

where the long term and nonequilibrium components of the deviatoric second Piola—Kirchhoff tensor are
given as

~

, 0¥, (0)
So=2"Fc" (21a)
. %,(C,C,)

=2 % 21

As an illustration of the general set of Eqgs. (19)—(21a) and (21b), consider again the compressible neo-
Hookean case with proportional nonequilibrium components. For this simple example, Egs. (19) and (13)
yield the pressure as

p=K(J—1). (22)

Differentiating Eq. (14) with the help of expression (18) gives the equilibrium deviatoric second Piola—
Kirchhoff stress component as
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S=uy (1= ch, (23a)

o0

Finally, an identical derivation using Eqgs. (21b) and (16) gives the nonequilibrium components for this
simply neo-Hookean model as

S, =g, PlCt - cc.he. (24)

Note that as C,, approaches C = Iy 3c , the above tensor vanishes, in the same way as in the rheological

model the spring force f, tends to zero as the strain x, catches up with the total strain x.
2.4. Evolution equation — rate form

In order to complete the description of the viscoelastic model proposed, it is now necessary to define
equations for the evolution of the set of internal variables embodied in the viscous strain tensors C,,. In
Lubliner (1985), simple linear equations similar to Eq. (7) for the rheological are proposed. However, these
linear relationships are incompatible with the nonlinear condition det C,, = 1. In contrast, in Simo (1987),
Holzapfel and Simo (1996) and Holzapfel (1996) simple linear evolution laws are assumed for the non-
equilibrium forces S, directly. Again this presents the problem of ensuring that the condition S/, : C = 0 is
not violated. The approach followed here, albeit similar, is based on the relaxation form of the viscous
forces contained in Eq. (8). It is in fact a simple step to extend this equation to the nonlinear regime by
simply replacing the forces by the second Piola—Kirchhoff tensor and the strain by the right Cauchy—Green
tensor to give,

ds’, 1
dt T, 5.

C=constant

(25)

where 71, is again a retardation or relaxation time parameter that will determine the rate of dissipation of
viscous stresses. Given that .S, is a function of both C and C,, and using the chain rule, the left-hand side
derivative in this equation can be expressed as

oS, . 1

:Cy, = ——S8, 26
aC‘Vz o ‘Cd o ( )
thereby leading to the following nonlinear evolution equation for the state variables C,,,
C, = flM;I .S, (27a)
To
*v,(C,C,
M, = 2¥ (27b)

dCaC,,

A number of interesting observation must be made in relation to this equation. Firstly, note that it closely
resembles the evolution equation given by Simo (1988) for the plastic strain in the context of a large strain
elastoplastic formulation based on the maximum plastic dissipation. In fact, it is easy to show that Eqs.
(27a) and (27b) corresponds to a viscoplastic case in which the yield surface ¢(C,C,) is defined by the
nonequilibrium strain energy function and the elastic region has been collapsed to the origin. This similarity
can be used to generalize Eq. (25) by simply replacing the right-hand side with an appropriate flow rule. In
this way a fully nonlinear evolution model could be constructed. The crucial difference between Eq. (25)
and the similar models proposed by Simo (1987), Holzapfel and Simo (1996) and Holzapfel (1996), is the
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fact that the time derivative is now taken at comstant total deformation C. This makes the evolution
equation perfectly compatible with the constraint .S’ : C = 0. Finally, it must be emphasized that although
the evolution equations (27a) and (27b) for the state variables C,, is nonlinear, the underlying relaxation
law embodied by Eq. (25) is clearly linear. A detailed account of fully nonlinear evolution models is given
by Lion (1997).

2.5. Incremental evolution equation

In the context of a computational model, Egs. (27a) and (27b) would have to be integrated in time in
order to update the state variables from step n to step n + 1. However, the use of this equation is highly
cumbersome and can be easily avoided by directly re-interpreting the left-hand side of Eq. (25) in an in-
cremental form as

dS,at 1 ! n+1 ! n
df :E[Sa(cmkhcv:— ) —Sa(C,,H,CV“)], (28)

C=constant

where A¢ denotes the timestep #,,; — ¢,. Note that the term S’“(C,Hl, Czy) represents the new state of stresses
that would be obtained in the absence of further viscous deformation. It can also be interpreted as the
stresses that would result if the deformation from step n to step n + 1 took place instantaneously. In the
context of elastoplasticity, this term is often known as the zrial state of stresses which may or may not be
compatible with the yield surface inequality. In the present viscoelastic context a relaxation of this stress is
inevitable and the final stresses can be derived by substituting Eq. (28) back into Eq. (25) to give

SL(Cr €)= 8/ (Cor, L) = =2 8L(Con L), (29)

Note that the right-hand side of the equation has been taken at step n + 1. This coincides with a backward
Euler (or fully implicit) integration of Eq. (25) which is only first order accurate in time. Although more
accurate integration rules are possible, this form has the advantage of leading to a particularly simple form
of the stress update obtained by re-arranging terms in Eq. (29) to give

S;(n+l) _ Tj_iam S'/“(WH), (30a)
S/l — S, (Cui1, Cy). (30b)

In this expression, the final relaxed stresses are simply proportional to the instantaneous stresses S’; Again
borrowing the terminology of elastoplasticity, Eq. (30a) can be interpreted as a generalized radial return
rule. Obviously, the above equation is much easier to implement in a computational context than the in-
tegration of Egs. (27a) and (27D).

Equation (30a) is deceptively simple. In fact, once the nonequilibrium stresses are evaluated, it is nec-
essary to obtain the new state variables at step n + 1. This is not a trivial matter as it implies inverting
expression (21b), or in practical terms solving for C,, from the set of six nonlinear equations
S(Cui1, €'Y = 81V with the additional condition det C,, = 1. (Note that this additional condition is
essential as the equations are not fully independent given that C : 8’ = 0.) Hence, despite using the fun-
damentally linear equation (25) to construct an incremental evolution algorithm, the underlying nonlin-
earity of the evolution equations (27a) and (27b) for the state state variables C,, is not entirely avoided and
it re-emerges in the form of a nonlinear set of equations for the values of the new state variables. For
instance, in the particular case of the neo-Hookean model discussed above, Eq. (24) gives the new internal
variables in terms of the stresses as
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L g0 (31)

(Cn+1 -1 — " -
Vy ) ﬁ“ul:;l/:; +1

where .= C: C, " is an additional unknown to be solved for using the condition det C,, = 1. This gives a
nonlinear equation for 1 as

det [4 +1C, ] =1, (32a)

1
Bty

which can be solved using a simple Newton—Raphson type of iteration.

A S/(n+l) (32b)

o

2.6. Tangent modulus

The use of the above viscoelastic model in the context of a finite element formulation will require the
derivation of a tangent material operator in order to permit the use of a global Newton—Raphson iteration
scheme (e.g. Bonet and Wood, 1997). This operator measure the changes in stress resulting from changes in
total strain and in the present Lagrangian or material setting is defined as

oS  _o(piCc™h oS
The volumetric component is independent of the current viscoelastic formulation and can be easily derived
with the help of Eq. (18) to give (Bonet and Wood, 1997),
o(pJC™!
Col = 2% = (K +p))(C @C)—2p)(C O CTY), K=U"(J), (34)
where K denotes the tangent bulk modulus of the material and the tensor notation C~' ® C' introduced
by Holzapfel (1996) has been used to represent a fourth order tensor defined as

_aC*1
oC '’

(33)

cloc!=

(35a)

2(CTT O C )y = (CNR(C) + (€1 (C 1) (35b)

The deviatoric components of the tangent operator are expressed in terms of long term and nonequi-
librium contributions as

~ as ~ ~
C*Z%*Coo‘i’zd:cm (363')
~ G
=2—= 36b
=22, (36)
~ GAY
=2z,
C, Yo (36¢)
For instance for the neo-Hookean case, standard algebra leads to a steady state component given as
Co=2u" (Cc'oc!-Uoc!-Iic wI+ic oc™). (37)

Finally, the evaluation of the nonequilibrium contribution could be far more complicated as the changes
in the internal variables C,, arising from a change in C would also need to be taken into account.
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Fortunately, the simplicity of Eq. (30a) makes this process unnecessary as clearly the differentiation of the
final relaxed stresses is given in terms of the derivatives of the instantaneous stress tensor as,

~ Ty ~
"= A C.. (38a)

. a~/(n+])

c, = asé —. (38b)

Again in the case of a proportional neo-Hookean equation, the differentiation of Eq. (24), taking the total
right Cauchy—Green tensor C at n + 1 whilst C,, is fixed at n gives

b 1 1/3
= Mﬁﬁ B(Cur: €M) 0 G =36 e 6l =G, e e
+ %(C”*l : CV )Cn+1 ® Cn+l] (39)

3. Spatial formulation

The above Lagrangian formulation is suitable for all types of materials, including those exhibiting an-
isotropic behaviour. For isotropic materials, however, it is possible and often preferred to employ a spatial
formulation to describe the state of stress and strain Simo (1992), Peric et al. (1992), Miehe (1994). Typ-
ically, the Cauchy stress tensor ¢ =.J 'FSF' and the left Cauchy—Green (or Finger) strain b = FF" are
used for this purpose. In the context of the multiplicative decomposition, the isochoric and elastic com-
ponents of the left Cauchy—Green tensors are given as

~

§->

i‘ (40a)
=F, F;{ (40b)

§->

Note that both these tensors are based on the current spatial configuration. The strain energy can now be
expressed as a function of J, b and b, to give

W(b,b,) = UJ) + Poulb) + 3 Walh). (41)

For many isotropic materials, the dependency of the strain energy on b and i)ex is often expressed in
terms of the principal stretches of the deformation 4; (i = 1,2,3) defined as the square root of the eigen-
values of b (see for instance Ogden, 1984). Similarly, the total isochoric stretches 4; and their elastic
counterparts A;* can be evaluated from the expressions

3”,‘ = );2 n;, /ALA,' = J_]/3;L[, (423)
beni, = (V) my,, A =07V, (42b)
where n; are the principal directions of the deformation of b and n;, the principal directions of l; Note,
that these principal directions will, in general, be different. Note also that J = 4;4,4; and, by constructlon

the isochoric stretches satisfy 4,/ 24y = 1. It is now possible to re-write the strain energy equation (41) as a
function of the total and elastic stretches to give

W(J, 7 i) = UW) + Poo(A) + > Wali). (43)
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3.1. Cauchy stress

In the same way as the second Piola—Kirchhoff is split into volumetric, long term isochoric and non-
equilibrium components, the Cauchy stress tensor will now be similarly decomposed as

a:pl—l—a/x—&—ZJ;, (44)

where as in Eq. (19) the pressure is given as the derivative of the volumetric energy function U and the ' ”
symbol has now the usual meaning of standard deviatoric component of the corresponding tensor. The
isotropic nature of the materials under consideration implies that the above stresses share the same prin-

cipal directions as their corresponding strain tensors and therefore can be expressed as
3
!/ !
6 = E o, M Q 1y, (45a)

3
0'; = Z O-;aniac @ nyy, (45b)

where the principal stress components can be obtained by differentiation of the strain energy terms with
respect to logarithmic stretches to give (see Chapter 5 of Bonet and Wood, 1997 for a more detailed ex-
planation)

,1av,

e T oI, (462)
, 1 v,

%= T ol S (46b)

As a simple illustration of the above equations, consider the material commonly used to describe metals
in the large strain elastoplastic range (Simo, 1992; Peric et al., 1992) in which the strain energy is defined as

3 3 3 2
A 1
Vo =py (i)' =p) (n2) —3p ( S i A> , (47a)
i=1 i=1 i=1
3

e - e 1 : € ’
'Poc = ﬁalu Z(h’l /liy)z = ﬁouu Z(ln /Li“)z - 3ﬁouu<z ln}"i1 ) (47b)
i=1 i=1

i=1

where again the strain energy ¥, associated to each viscous component o has been assumed proportional to
the long term function ¥.. Differentiating with respect to the logarithmic stretches gives the principal
deviatoric stress components as

Ja!, = 2uln i, (48a)
Ja,, = 2up, In i, (48b)

Note that these equations are identical to those employed in linear elasticity except for the use of loga-
rithmic strains instead of small strains.

3.2. Incremental kinematics

In order to employ the equations described in the previous section at a given stage of the deformation
process, it is first necessary to be able to evaluate the elastic deformation gradient corresponding to each
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o
Fig. 3. Multiplicative decomposition at steps n and n + 1.
viscous element o. This cannot be achieved, however, without the knowledge of the permanent strain ac-
cumulated in the viscous elements. In order to derive some evolution equations for the accumulated viscous
strain in the spatial configuration, it is first necessary to consider the incremental motion from step n to step
n + 1 and the multiplicative decompositions of the respective deformation gradient tensors. This process is
shown in Fig. 3 for a single Maxwell element . Note that no assumptions are made about the size of this
incremental motion, although in practice, small but finite increments will be required for an accurate
simulation. If the deformation from stage n to n+ 1 took place instantly, without any time for viscous
n+1

relaxation, the resulting elastic state would be described by the deformation gradient F % » which maps the
previous unloaded configuration to the current state as

F' = Fi'F; . (49a)
The corresponding instantaneous left Cauchy—Green tensor would be given in terms of current isochoric
deformation gradient and the previous viscous right Cauchy—Green tensor as

(49b)

. -~ SN N - - .
byt = (B ) (Fi) = Fo(PL) (1) TBL, = (€))L
In the context of elastoplasticity, the above instantaneous elastic tensors are known as ‘trial’ state and if
the resulting trial state of stresses satisfies the yield criterion, no further plastic strain will be required. In
viscoelasticity, a certain amount of viscous relaxation during the increment is inevitable. This relaxation
process is described in Fig. 3 by the incremental viscous deformation gradient F,,, which maps the inelastic
deformation state at stage » to its final position at step n + 1 as

Fit' = F, F' . (50)
It is now possible to link the instantaneous elastic deformation gradient, the incremental viscous defor-

mation gradient and the current elastic deformation gradient via an incremental version of the multipli-
cative decomposition given as

Fif' = F'F,,. (51)

Note that in essence this equation is identical to expression (10). The total isochoric deformation gradient F
has been replaced by the instantaneous elastic deformation gradient F and the incremental viscous
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deformation gradient F,, has taken the place of the total permanent deformation F,,. The main advantage
of Eq. (51) over Eq. (10) is that during the increment it is possible to assume that the incremental viscous
deformation is co-linear (i.e., shares the same principal directions) with the elastic deformation gradient and
consequently, the principal stretches of the above three tensors are related by

7 0 1Co 14y
phe L) Af(nﬂ)ﬂi . (52)
Clearly, only in exceptional circumstances where there is no rotation of the principal directions of stress
during the deformation, would the above relationship be true in terms of the total stretches 4;, and 4;,. Eq.
(52) can be more conveniently expressed in terms of logarithmic stretches as
2ed . Aey 14y

InZ7,, ) =Inig, ) +Ini>. (53)
Note that since b”+1 can be evaluated from Eq. (49), the instantaneous stretches in Eqgs. (52) or (53) are
known. In addmon as a result of the assumption that the incremental viscous deformation is co-linear with
the elastic deformation, both the instantaneous elastic deformation and final elastic deformation corre-
sponding to viscous element o are also co-linear. Consequently, the tensors b'Hl and b”“ share the same set
of eigenvectors n;, and can therefore be expressed in terms of the correspondmg elgenvalues as

. 3 o 2

bZ§1 = Z <’1?Zn+1)) nlenl, (54a)
i=1

A~ 3 A

B = () e ot (54b)

i=1

3.3. Evolution equation

In order to complete the spatial viscoelastic model, it is now necessary to provide an equation for the
incremental viscous strain /lf'“ taking place during the interval from step n to n + 1. In order to simplify the
notation in the derivations to follow, the index n + 1 denoting values at the current step will be dropped
whenever possible. The relaxation process during the interval will now be assumed to follow a nonlinear
version of Eq. (7) introduced for the linear rheological model of Section 1.1. For this purpose let s denote a
time parameter varying from 0 at ¢, to At at ¢,,1. The rate of change of the logarithmic incremental viscous
deformation is now postulated as

1 N
I (InZ(s)) = - <1n J% _In Xf"(s)). (55)

In this equation )vf"(s) changes from 0 at s = 0 to a final value }Lf’ at s = At. It is therefore possible to
integrate the above rate equation using a first order accurate backward Euler rule to give

Ait In i :Tl <1n;2§9 —mfﬂf). (56)

Re-arranging the terms in this equation enables the principal logarithmic incremental viscous strain cor-
responding to Maxwell element « to be evaluated in terms of the instantaneous logarithmic elastic stretch
and the retardation time t, as

At 26

In /. (57)

In A% =
! At + 1, !
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Consequently, combining this equation with expression (53) yields the actual logarithmic elastic stretch at
step n+ 1 as,
T, 0

In ) = In /.
! T, + At A

(58)

Interestingly, for the particular case of the simple material defined by Egs. (47a) and (47b)—(48a) and
(48b), an identical relationship to that obtained for the second Piola—Kirchhoff tensor in Section 2.5 is now
obtained for the Cauchy stress components as

/ T“

O-iac T —|—At 6-;@7 &:x = O-;a(/{?g)7 (59)

where the notation ¢’ indicates instantaneous stresses obtained under the preliminary assumption that there
is no further viscous strain during the increment. Additionally, it is worth mentioning that a more accurate
time integration of Eq. (55) leads to the relationship

In /& = e /™ In }A,eg (60)

The use of this expression in place of Eq. (58) will have to be explored in the context of a computational
implementation of the above model.

Finally, once the current elastic stretches are evaluated with the help of Egs. (58) or (60), the elastic left
Cauchy-Green tensor I;% can be obtained with the help of Eq. (54b) and the internal variables C,, can be
updated as

() = (P (R T = FLBFT (61)

3.4. Tangent modulus

In order to complete the spatial version of the proposed viscoelastic model, the tangent material operator
needs to be derived. A simple procedure required for this derivation when the strain energy is defined in
terms of principal stretches is explained in details by Ogden (1984) and Bonet and Wood (1997) (Refs. Simo
and Taylor, 1991 or Miehe, 1994 for an alternative procedure). In summary, the tangent operator is split
into volumetric, long term and viscous components as

C = Cyy + € + Zé“' (62)

The volumetric component is independent of the viscoelastic model and can be obtained by pushing for-
ward Eq. (34) for the Lagrangian version to give

Cvol = (KJ +p)(I ® I) — 2pi, (63a)

K=U"(J), (63b)
where i denotes the fourth order identity tensor defined by

i = 001 + 00 (64)

The long term component is evaluated following the procedure given by Bonet and Wood (1997) to yield
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3

le n,®n,®nj®nj ;amn,®n,®n,®n,

/ '\2 2
—a A
+ E loo)/ziﬂéoo d (n,®n/®n,®Il/—|—n,®n/®n/®n,) (65)

ij=1
i)

Similarly, the viscous components are given by the fourth order tensor defined in terms of principal di-
rection and derivatives with respect to the instantaneous elastic stretches as

3
10(J E
é:x ( G ) n, @n, njy & nj, — 0-19( iy © Rig @ Miy @ Niy
~J dln /¢ i=1

+Z zcx “ gj)

~ T
ﬁ — ()

(”i(x (9 nj, X ni; @ nj, +ni, ® nj, ® nj, &® nix)~ (66)

eV

As an illustration consider the simple material defined by Eqgs. (47a) and (47b), (48a) and (48b). In this case
the above derivatives are easily obtained as (Bonet and Wood, 1997),

0(Jal,.) 1
o, 2K (5,, - 5) : (67a)
J
0ow) _ 2ubyts (5 1Y (67b)
dln /lj‘y T, + At 3

4. Concluding remarks

The paper has presented new Lagrangian and spatial formulations for large strain isothermal visco-
elasticity as extensions of the well known generalized linear Maxwell model. Both formulations proposed
are based on the multiplicative decomposition of the deformation gradient now common and fully accepted
in large strain elastoplasticity. The Lagrangian formulation is similar to the model proposed by Lubliner
(1985) except for the use of a nonlinear relaxation equation for the internal variables. This equation is
derived from a linear relaxation model which gives the rate of change of viscous stress components at
constant total strain in terms of a retardation time parameter and the current state of stress. It is simply an
extension of a similar equation governing the relaxation of the forces in the Maxwell dashpot at constant
total strain. The resulting rate equations for the plastic strain can be seen as a particular case of the general
elastoplastic formulation proposed by Simo (1988). Crucially, the resulting relaxation equation can be
interpreted incrementally in a way that leads to a trivial evaluation of the second Piola—Kirchhoff stresses in
terms of the stresses that would be measured if the increment had taken place instantaneously. Given the
stresses, the model will then require the evaluation of the updated viscous strains. In general, this process
will not be trivial as it requires the solution of a set of six coupled nonlinear equations. However, a local
Newton-Raphson procedure will furnish the solution at a reasonable amount of effort. In order to illustrate
the formulation, the simple neo-Hookean model has been used to derive the resulting equations for the
second Piola—Kirchhoff stress and the tangent operator.

The spatial model proposed for isotropic materials is equally based on the same multiplicative de-
composition. However, a different evolution equation is postulated in terms of the logarithmic stretches of
the elastic and incremental viscous deformation. The incremental, rather than total, viscous deformation is
used for this purpose because only the former that can be assumed to be co-linear with the elastic strain for
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isotropic materials. The simple linear Maxwell relaxation equation is now extended to the nonlinear case by
re-writing it in terms of logarithmic stretches. The resulting formulation only coincides with the previous
Lagrangian model for a particular case of elastic strain energy function.

For simplicity only first order accurate integration procedures have been discussed in this paper.
However both the Lagrangian and spatial formulations can be integrated more accurately. This aspect of
the formulation will have to be explored in the context of a finite element formulation where the gains of
more accurate integration can be measured against other problem such as ease of implementation or
convergence of the nonlinear equations.
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